Training Workshop on MACHINE VISION (LIGHTING, OPTICS & CAMERAS)

*by*Dr. Mani Maran Ratnam

MMR Training and Consulting

Course outcomes

- Simplify machine vision solutions by exploiting and/or imposing constraints
- Select correct lighting type for a range of applications
- Determine pulse width required in high-intensity strobe lighting
- Assess consistency and uniformity of machine vision lighting
- Understand various camera and imaging parameters
- Select suitable camera sensor resolution
- Determine maximum exposure to prevent motion blur
- Select suitable lens for optimum magnification and image quality
- Investigate effect of f-number on depth-of-field and image quality
- Determine spatial resolution of imaging system
- Determine data transfer rate for high-speed application
- Understand various camera interface types and applications
- Select suitable camera interface type for given application

Course content

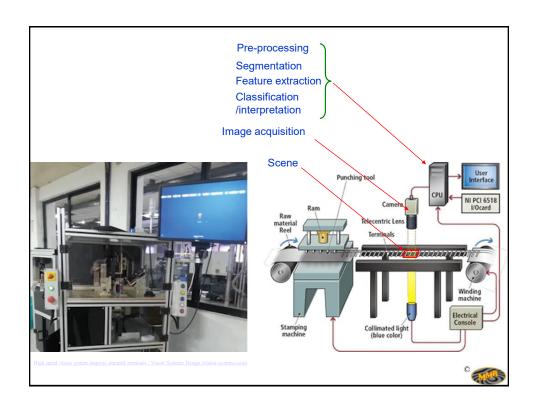
Part 1 - Scene constraints

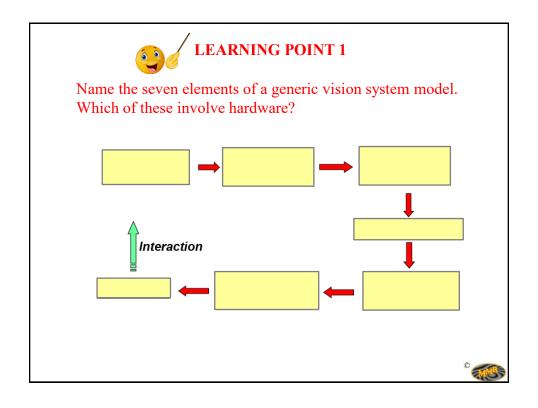
- · The generic machine vision model
- Principal aims of scene constraints
- Exploited vs. imposed constraints
- · Methods of exploitation of constraints
- Methods of imposition of constraints
- Activity 1: Human as the ultimate machine vision system
- · Activity 2: Simplify the machine vision problem
- Activity 3a,b,c,d,e: Identify the constraints that can be exploited and/or imposed
- Activity 4: Suggest improvements to an existing machine vision system
- Activity 5: Simplify machine vision problem

Part 2 - Machine Vision Lighting

- · Aims of machine vision lighting
- Types of machine vision lighting and applications
- Spectral content of vision illumination source
- · Lighting for multispectral and hyperspectral imaging
- Factors affecting lighting selection
- · Factors affecting consistency of lighting
- Activity 6: Identify machine vision lighting types
- Activity 7: Match lighting type with image
- Activity 8 (P): Effect of lighting type on object features
- Activity 9: Determine pulse width required in strobe lighting
- · Activity 10: Select lighting using scene characteristics
- Activity 11a (P): Determine consistency of lighting
- Activity 11b (P): Determine uniformity of lighting

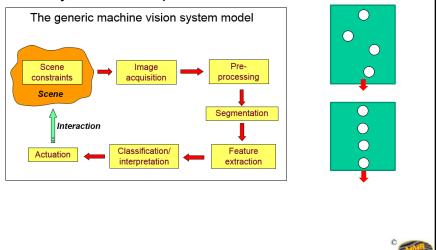
Part 3 - Machine Vision Optics


- Common imaging terms
- Lens mount types vs. sensor size
- · Focal length and magnification vs. sensor dimensions
- · f-number and numerical aperture vs. depth of focus
- · Depth of field vs. depth of focus
- Resolving power of lens vs. sensor resolution
- · Basics of image formation
- · Telecentric lenses and their uses
- · Activity 12: Determine focal length and select lens
- Activity 13: Increase magnification using extension tube
- Activity 14: Effect of f-number and gain on image quality
- Activity 15 (P): Capture image of IC chip to fill 90% sensor area



Part 4 - Machine Vision Cameras

- Camera selection process
 - color vs. monochrome
 - sensor resolution
 - frame rate, shutter speed vs. exposure time
 - global vs. rolling shutter
 - data transfer rate & camera interface
 - spectral response of sensor
- Sampling vs. quantization
- · Interlace vs. progressive scan
- CCD vs. CMOS sensors
- · Sensor format and dimensions
- Activity 16: Minimum camera sensor resolution needed
- Activity 17: Minimum exposure time to freeze motion
- Activity 18: Determine number of uncompressed images that can be stored on 32 GB SD card
- Activity 19: Determine the data transfer rate and camera interface
- Activity 20: Design a machine vision solution (Open-ended group)



1.1 What are scene constraints?

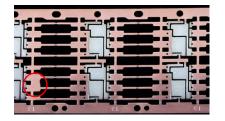
 Restrictions available in the scene or applied onto the scene to simplify subsequent stages in the machine vision system development

1.2 Aim of scene constraints

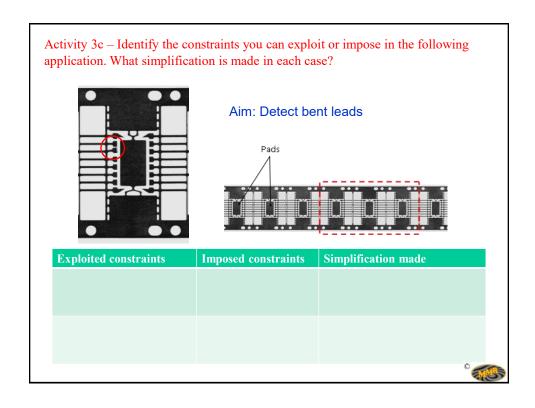
- Principal aims of scene constraints:
 - Maximize use of <u>prior knowledge</u> about the scene
 - ii) Make the problem of image analysis <u>as simple</u> as possible
 - Reduce unnecessary image processing stages
 - Shorten software development time
 - _____
 - -
 - _____

Activity 3a – Identify the constraints that are exploited and/or imposed in the following application. What simplification is made in each case?

Aim: Read label for sorting cookies


Understand your application!

Exploited constraints	Imposed constraints	Simplification made
		C


Activity 3b – Identify the constraints you can exploit or impose in the following application. Explain what simplification is made

Aim: Detect stamping defect in a cut leadframe

Exploited constraints	Imposed constraints	Simplification made
		C

Activity 3d – Identify the constraints you can exploit or impose in the following application. Explain what simplification is made

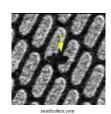
Aim: Detect defects on gear

Exploited constraints	Imposed constraints	Simplification made
		C

Example 2: Detect scratch marks on a CD

What constraint can be exploited?

What constraint can be imposed?


How is the problem of image analysis made simpler?

Example 4: Detection of defects on patterned wafer

What is the exploited constraint?

What is the imposed constraint?

How is the problem of image analysis made simpler?

